
HW Scheduling  

 Page 1 of 16 3/1/2005 

Hardware Based Scheduling 



HW Scheduling  

 Page 2 of 16 3/1/2005 

1. Consider a dynamically scheduled machine using Tomasulo’s algorithm and the 
datapath shown below. The functional unit latencies are as follows: load/store – 2 
cycles. FP ADD – 3 cycles, FP Mult – 5 cycles, Integer/Branch operations – 1 
cycle. There is one each of a load/store unit, FP ADD, FPMULT, and integer unit. 
All units have one reservation station and all units are pipelined.  If an operand is 
written on one cycle, dependent instructions will start executing on the next cycle.  

 

 

 

a. Using Tomasulo’s algorithm fill in the table below to show the clock cycle 
on which each instruction progresses through the corresponding functional 
unit. Start at clock cycle 0.  

 

The tag generated for an operand is unique to the reservation station and therefore the 
reservation station cannot be de-allocated when an instruction in the reservation is issued 
and begins executing. The presence of one reservation station per unit affects the load 
and store instructions which have to stall on a structural hazard  

 



HW Scheduling  

 Page 3 of 16 3/1/2005 

Solution I Issue Execute WB 
Code Issue Execute WB 

L.D F2, 0(R1) 0 1-2 3 
MUL.D F4, F2, F0 1 4-8 9 
L.D F6, 0(R2) 4 5-6 7 
ADD.D F6, F4, F6 5 10-12 13 
S.D F6, 0(R2) 8 14-15  
DADDUI R1, R1, #8 9 10 11 
DADDIU R2, R2, #-8 12 13 14 
BGT R1, #800 15 16  
 

b. Now imagine the datapath has included 4 entry ROB as shown below. Fill 
in the state of the ROB when the ADD.D instruction is ready to commit 
(but before it does).  The column  for Complete? Records whether 
execution has completed.  
Entry Instruction Destination Complete? 

1 S.D F6, 0(R2) M[R2 + 0] NO 

2 DADDUI R1, 
R1, #8 

R1 YES 

3 DADDIU R2, 
R2, #-8 

R2 YES 

4 ADD.D F6, 
F4, F6 

F6 YES 

 

 

c. With the four entry ROB, on what cycle could the bgt instruction issue? 
Briefly explain.  

 

As early as cycle 14, after the ADD.D commits.  

 

 



HW Scheduling  

 Page 4 of 16 3/1/2005 

2. Consider the following code sequence.  

1.  LOOP: LD F2, 0(R1) 
2.   LD F4, 0(R2) 
3.   MULT F6, F2, F4 
4.   SUBD F4, F6, F10 
5.   ADDD F8, F8, F4 
6.   DADDIU R1, R1, #-8 
7.   DADDIU R2, R2, #-8 
8.  BNEZ R1, R4 LOOP 
 

a. Using Tomasulo’s algorithm fill in the table below to show the clock cycle 
on which each instruction progresses through the corresponding functional 
unit. Assume the first cycle is numbered 0. Use the architecture 
parameters from the previous problem with two reservation stations per 
functional unit. Note execution begins on the cycle following the issue of 
an instruction to the reservation station. 

 

Instruction Issue Execute WB 
LD F2, 0(R1) 0 1-2 3 
LD F4, 0(R2) 1 2-3 4 
MULT F6, F2, F4 2 5-9 10 
SUBD F4, F6, F10 3 11-13 14 
ADDD F8, F8, F4 4 15-17 18 
DADDIU R1, R1, #-8 5 6 7 
DADDIU R2, R2, #-8 6 7 8 
BNEZ R1, R4 LOOP 8 9  
  

b. For which instructions are the results not written back to the register file?   
  

LD F4, 0(R2) 

The WAW on F4 ensures that the status of F4 is updated to wait on the 
write result from SUBD F4, F6, F10. On cycle 4 when the LD instruction 
writes back the result, the register does not load the value since it is now 
expecting an instruction from the SUBD instruction.  

 

c. Now imagine this loop body is scheduled with a scoreboard.  On what 
cycle will the ADDD instruction be issued?  

 



HW Scheduling  

 Page 5 of 16 3/1/2005 

7 – Note that WAW hazard between instructions 2 & 4 which prevents 4 
from being issued until the hazard clears on cycle 5. Thus instruction 4 can 
issue on cycle 6 and instruction 5 can then issue on cycle 7. (Note in the 
scoreboard there is an additional RO stage in the table!).  

 

 

d. Now imagine the unrolled loop body is statically scheduled on a two way 
superscalar machine where issue restrictions permit a memory operation, 
integer operation or a branch operation to be paired with a floating point 
operation. Devise the best schedule you can for the body of one iteration 
of the loop.  

 

Only the LD or DADDIU instructions can be paired with any of the floating 
point instructions. Concurrency between remaining pairs of instructions is 
limited by RAW and issue constraints. 



HW Scheduling  

 Page 6 of 16 3/1/2005 

3. For this question consider a machine with the following properties. The functional 
unit latencies are as follows: FP load/store – 2 cycles. FP ADD – 3 cycles, FP 
Mult – 5 cycles, Integer operations (including branches) – 1 cycle. There is one of 
each type of functional unit. Except for the integer unit, all of the other units have 
two reservation stations. Reservation station 1 is always allocated first.  The re-
order buffer has 4 entries addressed R0, R1, R2, R3 with R0 being the first buffer 
allocated after execution starts buffers are allocated sequentially. Consider the 
following code sequence scheduled on a processor using Tomasulo’s algorithm. 
Show the contents of the re-order buffer when the MULTD instruction from the 
first iteration is ready to commit. Assume an instruction in a reservation station 
will start execution on the cycle after the instruction supplying data writes back 
the value over the CDB. Indicate in the table below the instruction occupying that 
re-order buffer slot and whether it has completed execution and waiting to 
commit.  

 FOO:   LD        F0, 0(R1) 

        MULT  F2, F0, F4 

        LD   F4, 4(R1) 

       ADD  F2, F2, F4 

            SUBI   R1, R1, 8 

SW             0(R1), F2 

        BNZ  R1, FOO 

         SW             8(R1), F2 

 

 

SUBI R1, R1, 8 

MULTD F2, F0, F4 

LD F4, 0(R1) 

ADD F2, F2, F4 

R0 

R1 

R2 

R3 

Y 

N 

Y 

N 

Instruction Done? 



HW Scheduling  

 Page 7 of 16 3/1/2005 

4. Consider the following code and scheduling on a superscalar processor using 
Tomasulo’s algorithm.  

FOO:   1.  L.D       F0, 0(R1) 

          2.  MUL.D F2, F0, F6 

          3.  L.D   F4, 0(R2) 

         4.  ADD.D F2, F2, F4 

5.  S.D          F2, 0(R2) 

6.  DADDIU R2, R2, #-8 

7.  DADDIU R1, R1, #-8 

          8.  BNE  R1, R3, FOO 

a. Can instruction 4 be issued before instruction 2 completes? If so how is 
the WAW hazard avoided?  

 

The tag in register F2 will be updated when instruction 4 is issued. The update 
will record the tag value of the reservation station holding instruction 4. Thus even I 
instruction 2 completes after instruction 4, it will not errorneously update F2, and the 
correct order of completion of instructions 2 and 4 will be preserved. Note that 
instructions dependent on instruction 2 will have the tag of the reservation station that 
was allocated to instruction 2.  

 

b. What is the maximum ILP within the loop body that software pipelining 
can produce? 

The number of instructions in the loop body.  



HW Scheduling  

 Page 8 of 16 3/1/2005 

5. Explain 
a.  how WAW hazard is avoided when using an implementation of 

Tomasulo’s algorithm. Use the following code sequence as an example. 
 

ADD.D F0, F2, F4 

.. 

.. 

SUB.D  F0, F6, F8 

When the SUB.D instruction is issued the tag stored with register F0 is updated to reflect 
the source producing the value of F0.  Thus when instructions are issued in order, WAW 
hazards are avoided during execution since completion of the ADD.D instruction after 
the completion of the SUB.D is ignored.  

 

b. how WAR hazards are avoided when using the scoreboard. Use the 
following code sequence as an example.  

 

ADD.D F0, F2, F4 

.. 

.. 

MUL.D F2, F6, F8 

 

The MUL.D instruction can be issued. All write operations are first checked 
during the write-back stage to ensure that they can complete. The scoreboard 
prevents the write to F2 from occurring prior to the read by the ADD.D 
instruction.  



HW Scheduling  

 Page 9 of 16 3/1/2005 

6. Attached is a figure that contains all of the data structures for Tomasulo’s 
algorithm and a code sequence. Show the contents of the data structures when the 
first MUL.D has completed execution but has not yet written its result over the 
CDB.  The functional unit latencies are as follows: FP load/store – 2 cycles. FP 
ADD – 3 cycles, FP Mult – 5 cycles, Integer operations – 1 cycle. You have as 
many functional units as you need, i.e., there will be no structural hazards on 
functional units. The ADD.DI (FP ADD using an immediate operand) behaves the 
same as an ADD.D instruction. Assume all reservation stations are de-allocated 
only after the instruction completes! An extra copy of the data structures below 
is provided as an attached worksheet. Please only enter your final answer on this 
page.   

                                                                                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Instruction status: Exec Write
Instruction j k Issue Comp Result Busy Address
LD F6 0 R1 Load1  
MUL.D F8 F6 F0 Load2  
MUL.D F10 F4 F2 Load3  
ADD.D F8 F8 F10
ADD.DI F6 F4 0
S.D F8 0 R2
DADDUI R1 8 R1
DADDUI R2 8 R2
DADDUI R3 -1 R3
BNEZ R3 Loop

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1  
Add2  
Int2
Int1  
Mult1  
Mult2  

Register result status:
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

0 FU

0 1-2 3 

1 4-8  

2 3-7 8 

3 

4 5-7  

5 

Y Add -        [mult2] mult1  

Y Add F4 0 - - 

Y Add 8 R2 

Y Add 8 R1 

     ADD2    ADD1     MULT2 

Y R2+0           (for SD) 

8 

Note potential conflicts on 
the CDB at cycle 8 



HW Scheduling  

 Page 10 of 16 3/1/2005 

7. Consider a machine that uses Tomasulo’s algorithm to achieve out-of-order 
execution. This machine has the following functional units: 

 

Load: 2 reservation stations, latency = 2 cycles 

MUL: 1 reservation station, latency = 5 cycles 

DIV: 1 reservation station, latency = 44 cycles 

ADD/SUB: 1 reservation station, latency = 3 cycles 

Assume that writeback on the CDB happens in the cycle after the functional unit 
completes execution. 

The following sequence of instructions is executed on this machine: 

1 L.D  F6, 44(R1) 

2 MUL.D F4, F6, F2 

3 DIV.D  F8, F4, F9 

4 ADD.D F10, F8, F14 

5 ADD.D F8, F22, F24 

6 SUB.D  F4, F20, F26 

a) Show the dependence arcs between the instructions (identify: flow, anti, output), 
and identify the registers involved. 

 

1->2 flow F6 

2->3 flow F4 

2->6 output F4 

3->6 anti F4 

3->4 flow F8 

3->5 output F8 

4->5 anti F8 



HW Scheduling  

 Page 11 of 16 3/1/2005 

b) Fill in the following table. The first cycle is cycle-0.  
 

  Issue Execute Writeback 
1 L.D  F6, 44(R1) 0 1-2 3 
2 MUL.D F4, F6, F2 1 4-8 9 
3 DIV.D  F8, F4, F9 2 10-53 54 
4 ADD.D F10, F8, F14 3 55-57 58 
5 ADD.D F8, F22, F24 59 60-62 63 
6 SUB.D  F4, F20, F26 64 65-67 68 
 

 

c) If scoreboarding were used on this machine, in what cycle would instruction 5 
issue?  

 

  Issue ReadOp Execute Writeback
1 L.D  F6, 44(R1) 0 1 2-3 4 
2 MUL.D F4, F6, F2 1 5 6-10 11 
3 DIV.D  F8, F4, F9 2 12 13-56 57 
4 ADD.D F10, F8, F14 3 58 59-61 62 
5 ADD.D F8, F22, F24 63 X X X 
6 SUB.D  F4, F20, F26 X X X X 

 

 Instr-5 issues in cycle-63 and not cycle-58 (after DIV writes-back, WAW 
hazard ends) due to structural hazard on Add Functional Unit with Instr-4. 



HW Scheduling  

 Page 12 of 16 3/1/2005 

d) Fill in the following data structures at the conclusion of cycle 14.  

Note: In the (DIV, Vj) entry, it is also correct if [result value from previous 
MUL (Instr-2)] is used instead of [F4] 

Note: The provided Register Result Status table does not explicitly show  
the required entries to reflect the state of all relevant registers. It is enough 
to specify the required registers. The set would normally appear as 
follows.  

 

 Reg# Vj Qj 

 R1 [R1]  

 F4 [F4]  

 F6 [F6]  

 F8  [DIV]  

 F10  [ADD]  

 F14 [F14]  

Register Result Status

F0 

 

F1

Vj        Qj 

Load 1 

 

Busy              Address 

MUL 

 

DIV 

Busy        Op        Vj        Vk        Qj        Qk 

Reservation Stations 

No 

Yes DIV [F4] [F9]



HW Scheduling  

 Page 13 of 16 3/1/2005 

 F20 [F20]  

 F22 [F22]  

 F24 [F24]  

e) When instruction 4 is issued, what tags are assigned to operands in the assigned 
reservation station? How does the issue logic determine the tags? 
 

RS Busy Op Vj Vk Qj Qk  

ADD Yes ADD  [F14] [DIV]  

The issue logic determines this by examining the status of registers F8 
and F14 (the sources of Instr-4) in the Register File. The value of F14 is 
available in the reg-file, while F8 is waiting to get its value from the previous 
DIV instruction that has not completed yet. This is indicated by a tag for DIV 
in the status for F8. 

f) The described machine dispatches upto one instruction per cycle from the 
instruction queue to the reservation stations. Can the instructions be dispatched 
out-of-order? Justify briefly. 

 
NO. The Register File maintains either the most up-to-date values for each register 
(field Vj), or else, a tag identifying the Reservation-Station that corresponds to the 
instruction that will produce a value for that register. When an instruction is being 
issued to a Reservation Station, dispatch uses this information from the Register File 
to assign available operand values, or, tags identifying Reservation Stations holding 
instructions that will produce the operand values. Hence, in-order issue is required to 
ensure that no flow dependences are violated. For example, if there is a flow-
dependence between two adjacent instructions, then issuing the consumer instruction 
earlier would lead its operands to get either old-values or old-tags from the register 
file, instead of the result-value or tag for the producer instruction.  

Note: 

Note that out-of-order issue need not violate output or anti-dependences (name-
dependences), so long as the dispatch logic is augmented to check for whether values 
and tags in the register-file were produced by an instruction that occurs later in 
program order than the one currently being issued. And, the register-file is capable of 
holding tags and values from all instructions currently dispatched out-of-order (that is 
multiple entries per register). But there is still no way around the flow-dependence 
(true-dependence) constraint, so out-of-order issue is not permitted dues to flow 
dependencies.  



HW Scheduling  

 Page 14 of 16 3/1/2005 

8. Consider a dynamically scheduled machine. The functional unit latencies are as 
follows: load/store – 3 cycles. FP ADD – 5 cycles, FP Mult – 10 cycles, 
Integer/Branch operations – 2 cycles. There is one load/store unit, two FP 
ADD/SUB units, and one FPMULT.  If an operand is written on one cycle, 
dependent instructions will start executing on the next cycle. 

 

Consider the following code sequence.  

    L.D F2, 20(R1) 
    L.D F4, 30(R2) 
    MUL.D F6, F2, F4 
    SUB.D F4, F2, F4 
    L.D F8,40(R2) 
    ADD.D F4, F2, F2 
    SUB.D F8, F4, F8 
    S.D F8,20(R2) 
    S.D F6,30(R1) 

 

 

a) Assuming the use of a scoreboard, fill in the table below to show the clock cycle 
on which each instruction progresses through the corresponding execution stage. 
Assume the first cycle is numbered 1. Also assume reading operands takes one 
cycle to complete and operands become available one cycle following write backs 
on previous instructions.  

Code Issue Read Ops Execute WB 
L.D F2, 20(R1) 1 2 3-5 6 
L.D F4, 30(R2) 7 8 9-11 12 
MUL.D F6, F2, F4 8 13 14-23 24 
SUB.D F4, F2, F4 13 14 15-19 20 
L.D F8, 40(R2) 14 15 16-18 19 
ADD.D F4, F2, F2 21 22 23-27 28 
SUB.D F8, F4, F8 22 29 30-34 35 
S.D F8, 20(R2) 23 36 37-39    
S.D F6, 30(R1) 40 41 42-44   

 

Note structural hazards due the presence of a single functional unit of a specific type as 
well as WAW hazards. Also note that there are 2 FP ADD/SUB functional units.  

 



HW Scheduling  

 Page 15 of 16 3/1/2005 

b) Rewrite the above code sequence using a minimal number of additional registers 
to eliminate all WAR and WAW hazards. 
 

 
L.D F2, 20(R1) 

    L.D F4, 30(R2) 
    MUL.D F6, F2, F4 
    SUB.D F10, F2, F4 
    L.D F8,40(R2) 
    ADD.D F12, F2, F2 
    SUB.D F14, F12, F8 
    S.D F14,20(R2) 
    S.D F6,30(R1) 

 

Three new reigsters F10,F12 and F14 are introduced to eliminate all WAR and WAW 
hazards. 



HW Scheduling  

 Page 16 of 16 3/1/2005 

c) Now consider using Tomasulo’s algorithm. Each functionalunit has one 
reservation station and all units are pipelined. Note that execution begins on the 
cycle following the issue of an instruction to the reservation station.  When can 
the first ADD.D instruction begin executing and what is (functionally) the value 
of the tag stored in register F4 after this instruction has been issued? How does 
this issue time compare to the issue time when using a scoreboard. Explain any 
differences.  

 

Code Issue Execute WB 
L.D F2, 20(R1) 1 2-4 5 
L.D F4, 30(R2) 6 7-9 10 
MUL.D F6, F2, F4 7 11-20 21 
SUB.D F4, F2, F4 8 11-15 16 
L.D F8, 40(R2) 11 12-14 15 
ADD.D F4, F2, F2 12 13-17 18 
SUB.D F8, F4, F8 17 19-23 24 
S.D F8, 20(R2) 18 25-27   
S.D F6, 30(R1) 28 29-31   

 

The destination register has a tag whose value is set to reservation station value of the 
second ADD.D instruction. Thus, a WAW hazard is avoided with the preceding SUB.D   
instruction and it can be issued earlier that when using a scoreboard scheme.  

 

Note the presence of structural hazards on some functional units due to the presence of 1 
reseravtion station. Also note that there are 2 FP ADD/SUB functional units.  

 

 

 
 
 


